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FORCE-TEST INVESTIGATION O F  A l/b-SCALE MODEL 

OF TEE MODIFIED VZ-2 A I R C F W T  

By Robert H. Kirby, Robert 0. Schade, 
and Louis P. Tost i  

Langley Research Center 

A force- tes t  invest igat ion has been conducted t o  determine t h e  longitu- 
d ina l  aerodynamic charac te r i s t ics  and t h e  a i le ron  control  effectiveness of a 
l /&-scale  model of t h e  modified VZ-2 t i l t -wing vertical-take-off -and-landing 
a i r c r a f t  equipped with a full-span s l o t t e d  f l ap .  The model was a l so  t e s t ed  
over t h e  t r ans i t i on  range with a leading-edge droop modification. 

The re su l t s  of t h e  force  tes ts  indicated that  t h e  use of full-span s l o t t e d  
f l a p s  produced s izable  increases i n  l i f t  which resul ted i n  considerable reduc- 
t i ons  i n  t h e  wing incidence angles required throughout t h e  t r a n s i t i o n  range; and 
these reductions i n  wing incidence were very benef ic ia l  i n  reducing wing s ta l -  
l i n g  i n  t h e  t r ans i t i on  range. The use of leading-edge droop had no appreciable 
e f f ec t  on t h e  s t a t i c  longi tudinal  charac te r i s t ics .  The use of ful l -span aile- 
rons as a yaw control  f o r  hovering and low-speed t r a n s i t i o n  f l i g h t  appears t o  
o f f e r  considerable promise; however, t h e  phasing i n  of some roll producing con- 
t r o l  i s  necessary f a i r l y  ea r ly  i n  t h e  t r a n s i t i o n  t o  eliminate the  adverse roll 
t h a t  i s  encountered. 

INTRODUCTION 

Fl ight  t e s t s  of t h e  o r ig ina l  VZ-2 t i l t -wing vertical-take-off-and-landing 
(VTOL) a i r c r a f t ,  described i n  reference 1, showed t h a t  t h e  a i r c r a f t  had unaccept- 
able  l a t e r a l  s t a b i l i t y  and control  charac te r i s t ics  i n  t h e  t r a n s i t i o n  f l i g h t  
conditions i n  a speed range of approximately 40 t o  70 knots which corresponded 
t o  a range of wing incidence from approximately 45O t o  25'. The d i f f i c u l t i e s  
resul ted from wing s t a l l i n g  and were more severe for descent conditions than 
f o r  leve l - f l igh t  or climb conditions. The use of a wing-section modification 
consisting of a modest amount of leading-edge droop and an increase i n  nose 
radius was found t o  re l ieve  t h e  l a t e r a l  s t a b i l i t y  . .  and control  t roubles  t o  a 
considerable extent. 

The tendency toward wing s ta l l  i n  t h e  t r a n s i t i o n  range had been recognized 
from wind-tunnel tests as pointed out i n  references 2 t o  4. The e f f ec t  of t h i s  
s t a l l i n g  on t h e  l i f t ,  drag, and power required, and, consequently, on short-  
take-off-and-landing (STOL) and engine-out performance had been appreciated f o r  
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some time. The use of h igh - l i f t  devices, both t ra i l ing-edge f l aps  and leading- 
edge devices, had been recomended t o  re l ieve  t h e  wing s t a l l i n g  by increasing 
t h e  l i f t  capabi l i ty  of t h e  wing. With t h e  use of these high l i f t  devices the  
wing can produce more of t h e  l i f t  required of t h e  wing-propeller system and 
thereby reduce t h e  angle of a t tack  of t h e  wing-propeller combination as 
explained i n  d e t a i l  i n  reference 4. 
a i r c ra f t  was modified by t h e  addition of a l a rge  f l a p  t o  determine t h e  e f f ec t  
of such a f l a p  on t h e  lateral  handling qua l i t i e s  i n  t h e  t r a n s i t i o n  range. 

A s  a r e s u l t  of t h i s  wind-tunnel work, t h e  

A s  a r e s u l t  of t h e  foregoing experience, an invest igat ion has been made 
with t h e  l /k-scale f ree- f l igh t  model of t h e  VZ-2 used i n  the  previous inves t i -  
gations of references 3 t o  10 t o  determine: f irst ,  i f  upon close examination 
of t h e  range of f l i g h t  conditions i n  which t h e  la teral  s t a b i l i t y  and control  
d i f f i c u l t i e s  associated with s t a l l i n g  had been observed i n  f l i g h t ,  t h e  same 
objectionable cha rac t e r i s t i c s  could be observed with a f ree- f l igh t  model; and, 
second, i f  t h e  d i f f i c u l t i e s  could be recognized, whether t h e  charac te r i s t ics  
would be improved by t h e  use of t h e  wing f l a p s  t h a t  w e r e  t o  be i n s t a l l e d  on t h e  
fu l l - sca le  a i r c r a f t  as a modification. 

One phase of t h i s  invest igat ion,  reported i n  reference 11, dea l t  with 
r e su l t s  of f l i g h t  tests of t h e  model with a ful l -span s l o t t e d  f l a p  and with and 
without a full-span Krueger type nose f lap .  These f l i g h t  t e s t s  included both 
l e v e l  and simulated descent f l i g h t s  over a range of airspeeds where wing stal-  
l i n g  might be expected t o  occur. The other  phase of t h i s  invest igat ion,  which 
i s  discussed i n  t h e  present paper, consisted of force  tes ts  t o  determine t h e  
aerodynamic charac te r i s t ics  of t h e  model with a ful l -span s lo t t ed  f l a p  and 
leading-edge droop. Tests were a l so  made t o  determine t h e  effectiveness of 
full-span ai lerons when used as yaw control f o r  hover and low-speed f l i g h t .  
Most of t h e  tests were made i n  t h e  wing incidence range between 20' and 40' 
where wing s t a l l i n g  was expected t o  be most objectionable, but a few addi t ional  
tests were made t o  cover t h e  complete range of wing incidence angle from 9' t o  
8 7 O .  

SYMBOLS 

The forces and moments are based on t h e  s t ab i l i t y -ax i s  system, which i s  
an orthogonal system with t h e  or ig in  at t h e  a i r c r a f t  center of gravity.  
Z-axis i s  i n  t h e  plane of symmetry and perdendicular t o  t h e  r e l a t i v e  wind, t h e  
X - a x i s  i s  i n  t h e  plane of symmetry and perpendicular t o  t h e  Z-axis, and t h e  
Y - a x i s  i s  perpendicular t o  t h e  plane of symletry. 

The 

b wing span, f t  

CD drag coef f ic ien t ,  F,!,/qS 

CL l i f t  coeff ic ient ,  F L / ~ s  

Cy side-force coeff ic ient ,  Fy/qS 



pitching-moment coef f ic ien t  , My/qSc 

yawing-moment coef f ic ien t ,  %/qSb 

rolling-moment coef f ic ien t  , Mx/qSb 

wing chord, f t  

drag, l b  

l i f t ,  l b  

s ide  force,  l b  

wing incidence, deg 

ro l l i ng  moment, f t - l b  

pitching moment , f t - l b  

yawing moment , f t  -1b 

free-stream dynamic pressure,  lb/sq f t  

wing area,  sq f t  

scaled-up a i r c r a f t  veloci ty ,  knots 

angle of a t tack  of fuselage, deg 

angle of s ides l ip ,  deg 

def lect ion of a i leron,  deg 

def lect ion of r igh t  a i leron,  pos i t ive  t r a i l i n g  edge down, deg 

f l a p  def lect ion,  deg 

APPARATUS AND MODEL 

A photograph of t h e  l /b-scale  model of t h e  VZ-2 t i l t -wing VTOL a i r c r a f t  
full-span f l a p  i s  shown as f igu re  1, a three-view drawing of t h e  model i s  

presented as f igure  2 ,  and per t inent  geometric charac te r i s t ics  a r e  given i n  
t a b l e  I. The model had two 3-blade propel lers  with flapping hinges and was 
powered by a pneumatic motor which drove t h e  propel lers  through interconnecting 
shaf t ing and right-angle gear boxes. The speed of t h e  motor was changed t o  
vary t h e  t h r u s t  of t h e  propel lers  and the  propel ler  blade angle was set a t  12O 
at the  73-percent-radius s t a t ion .  Blade-form curves of t h e  propel lers  are 
presented i n  reference 8. 
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Detai ls  of t h e  wing, full-span ai leron,  and s l id ing  f l a p  a re  shown i n  
f igu re  3. The geometric changes which have been made t o  t h e  model t o  simulate 
t h e  fu l l - s ca l e  a i r c r a f t  i n  i t s  modified configuration can be readi ly  seen by 
comparing figure 2 and t a b l e  I of t h e  present paper with f igu re  1 and t ab le  I 
of reference 10. For t h e  purpose of t h i s  paper, t h e  main change was t h e  i n s t a l -  
l a t i o n  of t h e  full-span s l o t t e d  f l a p  which resu l ted  i n  a 10-percent increase i n  
t h e  wing chord when t h e  f l a p  was i n  t h e  re t rac ted  posi t ion.  The wing was piv- 
oted a t  t h e  33.7-percent mean-aerodynamic-chord s t a t i o n  and was t i l t e d  t o  pro- 
vide incidences from 9' t o  87'. 

TESTS 

The tes ts  were made i n  t h e  Langley fu l l - sca l e  tunnel with t h e  model sup- 
por t  s t r u t  mounted near t he  lower edge of t h e  entrance cone and about 5 f e e t  
above a ground board. 
forces  and moments on t h e  model, and an e l e c t r i c  tachometer was used t o  deter-  
mine t h e  model propel le r  speeds. Blockage and interference e f f ec t s  i n  t h e  
tunnel were believed t o  be very s m a l l  and, therefore ,  no wind-tunnel corrections 
were applied t o  t h e  data. 

E lec t r i c  strain-gage balances were used t o  measure t h e  

Force tes ts  were made t o  determine t h e  longi tudinal  charac te r i s t ics  of 
t h e  model f o r  t h e  f lap-retracted condition and f o r  f l a p  def lect ions from Oo t o  
40' at angles of wing incidence from 9' t o  87O through an angle-of-attack range 
from -10' t o  20'. The f l a p  conditions from 0' t o  40° a re  with the  f l a p  f u l l y  
extended and pivoted a t  t h e  leading edge of t h e  f l a p  which, when extended, i s  
located at  s t a t i o n  12.80 as shown i n  f igure  3 .  
lateral  s t a b i l i t y  charac te r i s t ics  of t h e  f lap-retracted configuration were made 
a t  wing incidences of go and 40'. 
t h e  f lap-retracted configuration with a leading-edge-droop f a i r i n g  added t o  t h e  
wing f o r  wing incidences of 20°, 30°, and 40'. A sec t ion  showing t h e  shape of 
t h e  leading-edge droop i s  shown i n  f igure  3. The spanwise extent of t he  droop 
was between t h e  nacel les  f o r  one group of tests and f u l l  span f o r  another group 
of tests. 

Force t e s t s  t o  determine the  

A f e w  longi tudinal  tests were also made i n  

Full-span aileron-control-effectiveness t e s t s  were made a t  angles of  wing 
incidence from go t o  87' f o r  t h e  f lap-retracted condition and f o r  t h e  extended- 
f l a p  condition with f l a p  def lect ions from 0' t o  40'. 

Tuft t e s t s  were made on the  model i n  t h e  f lap-retracted and i n  t h e  f l ap -  
deflected bo conditions. 
range from -40 t o  16O at wing incidences from 25' t o  45' f o r  t h e  f lap-retracted 
condition and a t  wing incidences from 5' t o  2 5 O  f o r  t h e  flap-deflected condi- 
t i on .  These wing incidences represented a ve loc i ty  range from approximately 
61 knots t o  39 knots f o r  both t h e  f laps-retracted and flaps-deflected 
conditions. 

These t e s t s  were made through an angle-of-attack 

All t he  force  tests were made with power se t t i ngs  which, with t h e  fuse- 
lage a t  zero angle of a t tack  and the  controls neutral ,  gave zero forward accel-  
erat ion.  I n  each test  t h e  angle of a t tack,  angle of s ides l ip ,  o r  r i gh t  a i le ron  
def lect ion was changed while t h e  model propel ler  speed was held constant. 



The majority of t h e  tests at angles of wing incidence below 40° were made 
a t  an airspeed of 22.2 knots which gave an e f fec t ive  Reynolds number based on 
t h e  wing chord and free-stream ve loc i ty  of about 3 lO ,OOO.  
higher angles of wing incidence it was necessary t o  reduce t h e  tunnel airspeed 
below 22.2 knots t o  avoid excessive propel ler  speeds i n  order t o  achieve t h e  
zero -f orward-acceleration condition. 

For t h e  t e s t s  at  

RESULTS AND DISCUSSION 

The r e s u l t s  of a force- tes t  invest igat ion t o  determine t h e  aerodynamic 
charac te r i s t ics  of t h e  VZ-2 t i l t -wing VTOL a i r c r a f t  with a full-span s l o t t e d  
f l ap ,  leading-edge droop, and ai lerons are presented i n  scaled-up dimensional 
form f o r  t h e  convenience of t h e  user i n  applying d i r e c t l y  t o  t h e  VX-2 a i r c r a f t  
and i n  non&imensional form f o r  ease i n  applying t o  other  configurations without 
rescaling these data.  The dimensional forces and moments are scaled up t o  t h e  
fu l l - sca le  a i r c r a f t  weight of 3450 pounds f o r  steady leve l - f l igh t  conditions a t  
a fuselage angle of a t tack  of Oo. 
gravi ty  posi t ions shown i n  t a b l e  11. The dimensional da ta  may be rescaled i f  
desired t o  other  s i zes  and weights by use of t h e  simple formulas f o r  scal ing 
data  shown i n  t h e  appendix of reference 12. 

The moments a r e  based on t h e  center-of- 

Longitudinal 

Effect  of flaps.- Figures 4 and 5 present t h e  basic  longi tudinal  da ta  i n  
scaled-up dimensional form, and f igures  6 and 7 present t h e  same data  i n  terms 
of conventional nondimensional coef f ic ien ts  based on free-stream veloci ty .  

Summary f igures  f o r  t h e  longi tudinal  data  are presented i n  f igures  8 t o  
10 f o r  t h e  condition of zero angle of a t tack,  which i s  t h e  angle of a t tack  at 
which t h e  drag was set equal t o  zero i n  t h e  tests. The data  of f igure  8 show 
t h a t  t h e  use of a ful l -span s l o t t e d  f l a p  produced s izable  increases i n  l i f t  
coef f ic ien t  f o r  all wing incidences tes ted.  This increased l i f t  r e s u l t s  i n  
considerable reductions i n  t h e  angle of wing incidence required f o r  any given 
l i f t  throughout t h e  t r a n s i t i o n  range. 
of 40° r e s u l t s  i n  a reduction i n  wing incidence of 1 5 O  t o  20' throughout t h e  
t r a n s i t i o n  speed range. Another e f f ec t  of t h e  f l ap ,  as shown by t h e  summary 
p l o t  of pitching-moment da ta  i n  f igu re  10, i s  t o  reduce t h e  l a rge  nose-up p i tch-  
ing moment i n  t h e  t r a n s i t i o n  range which was cha rac t e r i s t i c  of t h e  o r ig ina l  
VZ-2 configuration. It would be expected, however, t h a t  t h e  main purpose of 
t h e  f l a p  would be t o  re l ieve  wing s t a l l i n g  i n  order t o  improve t h e  f ly ing  qual- 
i t i e s  and reduce t h e  power required i n  the t r a n s i t i o n  range. 

For example, t he  use of a f l a p  def lect ion 

A n  indicat ion of t h e  effectiveness of t h e  f l a p  i n  reducing wing s t a l l i n g  
i s  shown by t h e  t u f t - t e s t  results of f igu re  11. This f igu re  shows t h e  s ta l l  
pa t te rns  f o r  t h e  f lap- re t rac ted  and bo f l a p  conditions with t h e  da ta  presented 
s ide  by s ide  f o r  angles of wing incidence t h a t  would give approximately t h e  
same airspeed. These da ta  show t h a t  t h e  f l a p  had a very marked e f f ec t  i n  
re l ieving t h e  wing stall but t h a t  t h i s  e f f ec t  became less and l e s s  as t h e  
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airspeed was reduced. There i s  altmys some question as t o  t h e  app l i cab i l i t y  
of small-scale t u f t - t e s t  data; therefore ,  a comparison of t he  results of t u f t  
tests of t h e  fu l l - s ca l e  a i r c r a f t  and t h e  l /k-scale  model f o r  t h e  o r ig ina l  unmod- 
i f i e d  configuration i s  presented i n  figure 12. 
pa t te rns  of t h e  model were qui te  similar t o  those of t h e  fu l l - s ca l e  a i r c r a f t  
and, therefore ,  i n f e r  t h a t  t h e  e f f e c t  of t h e  f l a p ' o n  t h e  stall  shown i n  f i g -  
ure 11 i s  reasonably accurate. 

These da ta  show t h a t  t he  stall  

Leading-edge droop modification.- The e f f e c t  of leading-edge droop on t h e  
longi tudinal  s t a b i l i t y -  cha rac t e r i s t i c s  of t h e  model with f l a p  re t rac ted  a r e  
presented i n  f igures  13 t o  16 f o r  wing incidences of 20", 30°, and 40". These 
da ta  ind ica te  t h a t  t he re  was no appreciable e f f e c t  of t h i s  small change on t h e  
longi tudinal  cha rac t e r i s t i c s  - t he  r e s u l t  t h a t  m u l d  be expected on t h e  bas i s  
of conventional aerodynamics. The force  t e s t s  of t h e  fu l l - s ca l e  a i r c r a f t  
reported i n  reference 13, a lso  indicated t h a t  t h e  drooped-leading-edge modifi- 
cat ion had very l i t t l e  e f f ec t  on t h e  l eve l - f l i gh t  longi tudinal  cha rac t e r i s t i c s  
i n  t h i s  same wing incidence range. However, f l i g h t  tests of t h e  fu l l - s ca l e  
a i r c r a f t  i n  l e v e l  f l i g h t  indicated t h a t  t h e  i n s t a l l a t i o n  of t h e  drooped leading 
edge on t h e  fu l l - s ca l e  a i r c r a f t  a l l ev ia t ed  the  Wing dropping, buffeting, and 
yaw disturbances. The model was not f l i g h t  t e s t e d  with the  leading-edge droop, 
but t h e  f r ee - f l i gh t  t e s t s  with a d i f f e ren t  leading-edge droop configuration 
(a Krueger f l a p )  reported i n  reference 12 indicated some improvement i n  f l i g h t  
charac te r i s t ics .  Evidently, on t h i s  a i r c r a f t  t he  use o f  leading-edge droop 
improves t h e  s t a l l i n g  cha rac t e r i s t i c s  of t he  wing i n  such a way as t o  be effec- 
t i v e  i n  improving t h e  f ly ing  qua l i t i e s  without causing a s u f f i c i e n t l y  major 
change t o  show up i n  t h e  gross l i f t  of t h e  a i r c r a f t .  This cha rac t e r i s t i c  i s  
discussed i n  considerable d e t a i l  i n  reference 13. 

Latera l  

Lateral  s t a b i l i t y .  - Lateral  s t a b i l i t y  da t a  a r e  presented i n  f igures  17 
and 1 8 f o r r a c t e d  condition a t  wing incidences of 9' and 40'. 
both angles of incidence the  model was d i rec t iona l ly  s t a b l e  at t h e  l a r g e r  
angles of s ides l ip ,  but at  small angles of s i d e s l i p  it was about neut ra l ly  
s t ab le  a t  a wing incidence of 9' and unstable a t  a wing incidence of 40'. I n  
t h e  f l i g h t  t e s t s  of t h e  configuration without f l a p s  reported i n  reference 14, 
t h e  a i r c r a f t  a l so  experienced d i rec t iona l  i n s t a b i l i t y  i n  t h e  low sideslip-angle 
range. 

A t  

Aileron control  effectiveness.  - The r e s u l t s  of tests made t o  determine 
t h e  effectiveness of full-span ai lerons throughout t h e  wing incidence range a r e  
presented i n  f igures  19 and-20 f o r  t h e  f laps- re t rac ted  condition. Figure-21 
presents t h e  basic  da ta  f o r  various wing incidences through t h e  t r a n s i t i o n  
range with three  f l a p  def lect ions a t  each wing incidence chosen t o  roughly 
bracket a zero-pitching-moment condition with t h e  controls  neutral .  The data  
from f igures  19 and 21  a r e  summarized i n  t h e  form of t h e  var ia t ion  of yaw and 
roll control  effect iveness  der ivat ives  %/Sa and -Mx/Sa, respectively,  
with forward speed and a r e  presented i n  figure 22. The values of t h e  deriva- 
t i v e s  were obtained by taking the  slopes between test  points  f o r  r igh t  a i le ron  
control  def lect ions of 10' and -10'. The da ta  show t h a t  t h e  yawing moment 
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produced by t h e  ai lerons drops off  somewhat between hovering f l i g h t  and a speed 
of about 20 knots and then remains f a i r l y  constant through t h e  remainder of t h e  
t r ans i t i on .  The da ta  a l so  show t h a t  t h e  various f l a p  def lect ions used i n  the  
t es t  program did  not appear t o  have a systematic e f f ec t  on t h e  yaw character-  
i s t i c s  through t h e  t r ans i t i on  range. 

The effectiveness of t h e  full-span ai lerons as a yaw control  i n  hovering 
and a t  low speeds can best  be seen by comparing them with t h e  t a i l - f a n  yaw 
control  on t h e  VZ-2 a i r c r a f t  wkich, according t o  reference 14, gave a maximum 
value of 21358 foot-pounds of yawing moment. The da ta  of figure 22 show t h a t  
approximately kilo of a i le ron  def lect ion would be required i n  hovering f l i g h t  
and approximately t-140 of a i l e ron  def lect ion would be required i n  t h e  low speed 
t r a n s i t i o n  range t o  give t h i s  value of yawing moment. It should be emphasized 
t h a t  reference 14 a l so  s t a t ed  t h a t  t h i s  amount of yaw control  w a s  d e f i n i t e l y  
considered inadequate f o r  anything but i dea l  zero wind conditions and t h e  most 
modest maneuvers i n  yaw. Howeverj t h e  f a c t  t h a t  considerably more yaw control  
can be obtained over and above t h i s  value by fu r the r  increases i n  def lect ion 
would ind ica te  t h a t  full-span ai lerons o f f e r  some promise as an e f fec t ive  hov- 
ering and low-speed yaw control.  The adverse roll of t h e  ai lerons was p rac t i -  
c a l l y  n i l  i n  hovering and increased slowly as t h e  speed was increased t o  about 
20 knots. 
rap id ly  a t  about a constant rate with speed. 
f l aps  decreased t h e  adverse roll about 20 foot-pounds per  degree at  the  lower 
speeds regardless of t h e  f l a p  def lect ion angle. It appears t h a t  because of 
t h e  adverse roll associated with t h e  a i le ron  control  it would be necessary t o  
phase i n  some roll producing control  such as d i f f e r e n t i a l  p rope l le r  p i t ch  with 
t h e  yaw control  f a i r l y  ea r ly  i n  t h e  t r a n s i t i o n  t o  eliminate t h e  adverse roll 
t h a t  w i l l  be encountered. 

A t  speeds above t h i s  value, however, t h e  adverse r o l l  increased 
Extending and def lect ing t h e  

c ONC LUSIONS 

On t h e  basis  of s t a t i c  force tests of a 1/4-scale model of t h e  VZ-2 a i r -  
c r a f t  with a full-span s l o t t e d  f l ap ,  leading-edge droop, and full-span a i le rons  
t h e  following conclusions a r e  draxn: 

1. The use of a full-span s l o t t e d  f l a p  produced s izable  increases i n  
l i f t  which resul ted i n  considerable reductions i n  the  wing incidence angle 
required throughout t he  t r a n s i t i o n  range. These reductions i n  wing incidence 
were very benef ic ia l  i n  reducing t h e  wing s ta l l  i n  t r ans i t i on .  

2. The use of leading-edge droop had no appreciable e f f ec t  on t h e  s t a t i c  
longi tudinal  charac te r i s t ics .  

3 .  The use of ful l -span a i le rons  as a y a w  control  f o r  hovering and low- 
speed t r ans i t i on  f l i g h t  conditions appears t o  o f f e r  promise. However, t h e  
phasing i n  of some roll producing control  will be necessary f a i r l y  ea r ly  i n  the  

7 



t r a n s i t i o n  t o  eliminate t h e  adverse roll t h a t  r e s u l t s  from t he  use of t h e  
a i le rons  as a yaw control .  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley S ta t ion ,  Hampton, Va. ,  March 16, 1964. 
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Propellers ( th ree  blades each): 
Diameter. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 
Sol id i ty  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.239 
Chord. in  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.0 

Wing: 
Pivot s ta t ion .  percent chord . . 
Sweepback (leading edge). deg . 
Airfo i l  sect ion . . . . . . . .  
Aspect r a t i o  . . . . . . . . . .  
Chord. i n  . . . . . . . . . . .  
Taper r a t i o  . . . . . . . . . .  
Area. sq i n  . . . . . . . . . .  
Span. i n  . . . . . . . . . . . .  

F 'u l l  chord. i n  . . . . . . . .  
Span. i n  . . . . . . . . . . .  
Full chord. percent c . . . .  
Fcll area. sq i n  . . . . . . .  

Dihedral angle. deg . . . . . .  
Ailerons (each: 

Chord a f t  of hinge l ine .  i n  . 
Area a f t  of hinge l ine .  sq i n  . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  33.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 . . . . . . . . . . . . . . . . . . . . .  Modified NACA 4415 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.78 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15.63 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  1166.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74.63 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-95 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32.62 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96.23 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.65 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  86.44 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.0 

Flap : 
Chord. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.21 
Chord. percent c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.33 
Span. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32.62 
Area. sq i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169.95 

Ver t ica l  t a i l :  
Sweepback (leading edge). deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28.0 
Air fo i l  sect ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Modified NACA 0012 
Aspect r a t i o  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.85 
Root chord ( a t  top of fuselage). i n  . . . . . . . . . . . . . . . . . . . . . . . . . .  23.0 
Tip chord (extended t o  plane of horizontal  t a i l ) .  i n  . . . . . . . . . . . . . . . . . .  14.63 
Taper r a t i o  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.64 
Area. sq i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301.0 
Span (from top  of fuselage t o  plane of  horizontal  t a i l ) .  i n  . . . . . . . . . . . . . .  16 
Rudder (hinge l i n e  perpendicular t o  fuselage center  l i n e ) :  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Chord. in  5.75 

A r e a . s q i n  75.7 
Span. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.44 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Horizontal t a i l :  

Sweepback (leading edge), deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 
Air fo i l  sect ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Modified NACA 0012 
Aspect r a t i o  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.91 
Chord, i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.19 
Center-section chord, i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12.63 
Area (including center  body). sq i n  . . . . . . . . . . . . . . . . . . . . . . . . . .  323.70 
Span. in  29 * 70 
Dihedral angle. deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Ventral fin*: 
Chord. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.25 
Span. in  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.00 
A r e a . s q i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37.0 

* A f t  end located bn model 11.0 inches forward of rudder hinge l i n e  measured along bottom 
of fuselage . 
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TABLE 11. - WEIGHT OF F U L L S C A L E  AIRCRAFT AND 

CENTER-OF-GRAVITY LOCATIONS FOR 

VARIOUS WING I N C I D E N C E  ANGLES 

50 
60 
70 
80 
86.7 

-. -. - . - - . - .- 

Center-of -gravity pos i t ion  
(from wing pivot ), f t  

~ ~~~ E._..-.~ 

Horizontal 
(forward) 

- .. ~ . . . ~ 

0.167 
.174 
- 175 
* 175 
173 
.169 
.158 

.118 

.092 

.071 

,140 

-. .~ ~- ~~ -- 

. - . - 

V e r t  i cal 
. (below) 
~ _ _ _ ~ ~  - 

1.404 
1.364 
1.346 
1.328 
1 309 
1.293 
1.258 
1.226 
1.198 

1.160 
1.174 

.- 
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L-61-3172 
Figure 1.- Photograph of  t h e  l/b-scale model of the VZ-2 t i l t -w ing  VTOL a i r c r a f t  w i t h  ful l -span f l a p  and a i l e rons .  



a 3.80 Diam. 

k-----20.75----1 

74.63 d 

Figure 2.- Three-view sketch of model. All dimensions are in inches. 
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Radius of L.E. = 0.300 with center 
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13.130 .470 Straight line 
13.300 .450 given under 
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straight line 
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Airfoil 

15.630 .023 - .023 

Figure 3 . -  Geometric characteristics of wing section. All dimensions are in inches. 
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